تبلیغات
ریاضی را آسان بیاموزیم - مجموعه ی عدد های طبیعی وتناسب معکوس و توان(کلاس سوم)

ریاضی را حفظ نکنیم با تمرین کردن یاد بگیریم

مجموعه ی عدد های طبیعی وتناسب معکوس و توان(کلاس سوم)

نویسنده :رضا سازمند
تاریخ:یکشنبه 30 مرداد 1390-03:25 ب.ظ

.:: مجموعه عددهای طبیعی ::.

 

عددهای طبیعی:

طبیعی منسوب به طبیعت است و به معنی آنچه به طبیعت اختصاص دارد و مربوط به طبیعت است ، می باشد. هر یک از اعداد 1, 2 , 3, ... که در طبیعت برای شمارش از آن ها استفاده می شود را عدد طبیعی می نامیم. مجموعه عددهای طبیعی شامل اعداد طبیعی می باشد و آنرا با حرف که از کلمه انگلیسی Natural گرفته شده است، نمایش می دهند.

 {... , 3, 2, 1} =

عدد اول :

هر عدد طبیعی بزرگتر از یک که غیر از خودش و عدد یک مقسوم علیه دیگری نداشته باشد، عدد اول نامیده می شود. 2, 3, 5, 7 اعداد اول کوچکتر از 10 می باشند؛ هر عدد طبیعی که بیش از دو مقسوم علیه داشته باشد ، عدد مرکب نامیده می شود. 4, 6, 8, 9, اعداد مرکب کوچکتر از 10 هستند؛ عدد 1 نه اول است و نه مرکب.

 

تعیین عددهای اول:

برای مشخص کردن اعداد اول از بین عددهای طبیعی از الگوریتم غربال اراتستن استفاده می شود.


اراتستن نام ریاضی دان و منجم یونانی است و غربال در فارسی به معنی جداکردن می باشد و الگوریتم به روشی از محاسبه گفته می شود که در آن ، محاسبات مرحله به مرحله انجام می شود و محاسبه هر مرحله نیز به مراحل قبلی بستگی دارد.

مراحل کار برای تعیین عددهای اول بین 1 و عدد طبیعی n به ترتیب نمودار زیر انجام می شود.

 

آزمون تشخیص اعداد اول:

برای بررسی اول بودن یک عدد ، ابتدا تمام اعداد اولی را که مربع آن ها کوچک تر یا مساوی عدد مورد نظر است، فهرست می کنیم. اگر عدد مورد نظر بر هیچکدام از آن ها بخشپذیر نباشد اول است؛ در غیر این صورت ، آن را    «عدد مرکب» می نامیم.

مثال: عدد 113 اول است یا مرکب؟

به عبارتی دیگر قاعده تشخیص اعداد اول را می توان این گونه بیان کرد:

عدد طبیعی n در صورتی اول است که بر هیچ کدام از اعداد اول کوچک تر یا مساوی بخشپذیر نباشد.

حل مسئله: در برخی از مسئله ها، تغییرات دو مقدار طوری است که حاصل ضرب آن ها ثابت می ماند. با مقایسه دو مقدار می توان فهمید که بین آن ارتباط معکوسی وجود دارد یعنی با زیاد شدن مقدار یکی، مقدار دیگری کاهش می یابد و برعکس. با تشخیص این موضوع و توجه به آن می توانیم این گونه مسئله ها را حل کنیم.

مثال: برای نقاشی یک ساختمان 3 کارگر 18 روز کار کردند. اگر می خواستند کار زودتر انجام شود، تعداد کارگران را باید بیشتر می کردند یا کمتر؟ اگر تعداد کارگر ها 6 نفر بود، این کار چند روزه انجام می شد؟

حل: تعداد کارگران باید بیشتر شود تا کار زودتر انجام گیرد.

می دانیم 3 کارگر 18 روز کار کرده اند ، حالا اگر تعداد کارگرها 6 نفر شود می توانیم رابطه زیر را در مورد این دو مقدار بنویسیم:   

و سپس آنرا از راه معادله حل کنیم:

بنابراین: 6 کارگر 9 روزه کار را تمام خواهند کرد.

در این مسئله با افزوده شدن کارگران ،  زمان کار کم می شود، یعنی حاصل ضرب تعداد کارگران با زمان همواره مقداری ثابت است.

توان:

توان به معنی قدرت ، قوه ، زور می باشد و در ریاضی نوعی ساه نویسی برای حاصل ضرب چند عد متساوی در یکدیگر می باشد .

مثال: 3×3×3×3×3 دراین ضرب ، عدد 3 ، 5 مرتبه تکرار شده است که در ساده نویسی به صورت زیر نوشته      می شود :

می نویسیم 35 و می خوانیم « سه ، به توان پنج » یا « توان پنجم ، 3 » .

در ریاضی 3 پایه و 5 توان (نما) نامیده می شود و اعداد نظیر 35 را اعداد تواندار می گویند .

 

 

قواعد موجود در اعداد تواندار :

 

a m × a n = a m+

مثال 

57 = 4+3 5 = 54 ×  53 

 

 a m ÷ a n = a m-n  

مثال 

2 12 = 5-7 12 = 125÷127  

 

 



توان صفر : اگر توان عددی برابر صفر باشد ، آن عدد برابر یک است .

 

 

( a m ) n = a mn  

مثال 

56  = 3×2 5  =   3(52 )

 

توضیح

 می دانیم  5×5 = 52  بنابراین :

56 = 5 × 5× 5 × 5 ×5 ×5 = 3(5×5) = 3(52)

 

 

  عبارت (am)n با amn فرق دارند. (به نقش پرانتز در عبارت اول دقت کنید.)

 

 

  عدد طبیعی n را مجذور کامل گویند هر گاه پس از تجزیه n به عوامل اول توان هر یک از عامل ها زوج باشد .

 

مثال Å عدد 144 را در نظر بگیرید و آن را به عوامل اول تجزیه کنید . (تقسیم به عوامل اول)

 

با توجه به اینکه 2و4 عدد زوج هستند ، بنابراین عدد 144 مجذور کامل است .

 

عدد طبیعی n را مکعب کامل گویند هر گاه پس از تجزیه ی n به عوامل اول توان هریک از عوامل ها مضرب 3 باشد .

مثال Å عدد 1728 را در نظر بگیرید و آنرا به عوامل اول تجزیه کنید .

 

با توجه به اینکه 3 و6 مضرب 3 می باشند ، بنابراین عدد 1728 مکعب کامل است .

عدد 144 را می توان مساحت مربعی به ضلع 12 در نظر گرفت .

می توان نوشت  12=

عدد 144 را مجذور کامل می گویند .

عدد 1728 را می توان حجم مکعبی به ضلع 12 در نظر گرفت .

1728 = 12×12×12 = 123 = حجم مکعب

می توان نوشت : 1728 = 123 و عدد 1728 را مکعب کامل گویند .

معادله توانی: معادله توانی معادله ای است که که در آن مجهول به صورت توان ظاهر شده است. مانند:  2x=۸. برای حل چنین معادله هایی در صورت امکان دو طرف معادله را به دو عدد تواندار با پایه های مساوی تبدیل می کنیم ؛ آنگاه توانهای دو طرف را با هم مساوی قرار می دهیم و جواب معادله را بدست می آوریم.

مثال: معادله های توانی زیر را حل کنید.

حل: دو طرف تساوی بالا فقط در صورتی می توانند با هم مساوی باشند ، که توان عدد  7 برابر صفر باشد. بنابراین می توان نوشت:

 




داغ کن - کلوب دات کام
نظرات() 
tamara
جمعه 22 دی 1391 09:43 ب.ظ
hendese vaaaaaaav kheyly sakhte
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر




Admin Logo
themebox Logo